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In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research
area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length
of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We
analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the
conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.
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Optical fiber communication transforms from conventional
on-off keying to coherent optical domain with polarization
multiplexing to increase information transmission rate[1].
Recently, another fundamental change has been conceived
by adding another degree of freedom in information map-
ping with mode division multiplexing (MDM) which is also
termed as spatial multiplexing in optical fiber communica-
tion[2]. The information theory reveals that adding a degree
of freedom in information mapping can increase the infor-
mation rate in multiplicative order[3]. Multimode fibers can
transmit multiple modes with distinct propagation constants
and unique spatial distributions of electric field on the cross
section of fiber cores. The modes can be considered as or-
thogonal modes on spatial distribution of fiber cross sections[4].
If the orthogonal spatial modes are collectively stimulated in
fiber, fiber core can be assumed as a bunch of separated trans-
mission channels through the fiber.

This new theory has been experimentally tested and re-
ported as a proof of principle[2,5,6]. Most of the experiments

use two-mode fibers or few-mode fibers as transmission me-
dia to avoid excessive mode coupling[7], and employ multi-
input multi-output (MIMO) signal processing in discrete do-
main at the receiver to remove propagation effects[8]. Few-
mode fibers, in contrast to multimode fibers, allow limited
number of modes to be guided depending upon normalized
frequency of the fiber. All the reported experiments are with
fewer distances[5]. Primarily, the length of the transmission
link is limited by intermodal delay, intermode coupling and
loss profiles of each mode[9]. This paper specifically focuses
on intermodal delay in few-mode fibers. In the presence of
mode coupling, larger intermodal delay restricts the perfor-
mance of signal processing to counter the effects of mode
coupling through propagation length[10]. So whatever trans-
mission format has been used, intermodal delay is a param-
eter to be considered for overall system performance.

This paper is focused on theoretical and numerical study
of intermodal delay in few-mode fibers, especially for MDM.
Its dependence on physical parameters of step index few-
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mode fibers and its relevance on mode multiplexing density
are explored. The formulations are reviewed to understand
the phenomenon of modal delays in multimode fibers, espe-
cially in general and few-mode fibers. Numerical analysis is
made on the basis of formulations.

In optical fibers, spatial modes are a set of distinct field
distributions, which propagate through the fiber with spe-
cific propagation constants. The fields are the solutions of
wave equation for optical fiber geometry. Although wave
equations have exact solutions for cylindrical dielectric me-
dia after rigorous mathematical efforts[11,12], considerable sim-
plifications can be achieved by applying weak guidance
approximations, which can be described as

where  is the fractional change in refractive indices at core-
cladding interface, and n1, n2 are the refractive indices of the
core and cladding, respectively. Simplified solutions of wave
equations under approximation of Eq.(1) lead to linearly po-
larized (LP) modes[13-15].

To determine how many modes can be guided in fiber for
given physical parameters, we need eigen value equations
for guided modes. Under approximations of <<1, the eigen
value equation of step index fiber is described as[13]

where k0=2  is a free space wave number, a is the radius of
the core, and b is the normalized propagation constant. Jl

and Kl are the Bessel’s function and modified Bessel’s func-
tion of l order.

For multimode or few-mode fibers, the difference of group
delay between one mode and another mode is called inter-
mode delay, which can be described as  (intermodal) =

21 gg TT .
Because intermodal delay is the dominant factor in mul-

timode or few-mode fibers[9], we may treat group delay ex-
pression of Eq.(5) by assuming negligible material disper-
sion and setting N1=n1 and N2=n2, and we get

Contrary to chromatic dispersion, modal dispersion is in-
dependent of changes in wavelength[17].

According to the above theoretical background, we study
the effects of different physical parameters on intermode dis-
persion in few-mode fibers.  We look for the conditions which
can be adopted to keep modal dispersion in desired limits
and increase the number of multiplex modes. The analysis is
based on the general solutions of field equations for step in-
dex few-mode fibers to compute normalized propagation
constants, group delays and finally group delay differences.
We focus our analysis on group delay difference between
any two guided modes on the variation of physical param-
eters of fiber separately. MATLAB is used for the computa-
tion of modes, group delays and group delay differences.

To start with analysis, we set  = 0.0107 for fused silica
(SiO2) fiber, and the wavelength is chosen as 1.550 m. So V
is changed by varying the core radius of fiber from 0 m to
15 m. Numerically computing normalized propagation con-
stants and ignoring degenerate modes for simplicity of
analysis, we use Eq.(6) for calculating group delays (Tg) for
each mode followed by group delay differences.

The group delay differences between the fundamental
mode and the five selected modes are shown in Fig.1. To
calculate group delay, we use fundamental mode as bench-
mark for every comparison, because every mode multiplex-
ing is supposed to add further modes with fundamental mode.
It can be seen that we have two trends for mode delay plots.
One is the region close to the cutoff value of higher mode in
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velocity and group delay of a particular mode, respectively.
Group delay of a particular mode for unit length can also be
expressed as a function of wavelength ( ) and fiber param-
eters (V)[16] as follows,

where  is the propagation constant for a specific mode. Nu-
merical solution of Eq.(2) is adopted to compute b for given
value of V and l = 0, 1, 2 . For each value of l, we may have
multiple solutions corresponding to m=1, 2 . So nume-
rically, we can get lm for any LPlm mode and get its field
distributions. After computing lm and b for a particular mode,
we can analyze dispersion. As  is dependent on wavelength,
a spectral component of input pulse with a certain value of 
can travel along the fiber with the time delay (group delay)

of Tg = L / Vg , where 
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delay equation and the other is far from the cutoff value. Near
the cutoff value, the group delay difference has sharp slope
with small variations of radius. Away from the cutoff value,
the group delay difference is with smooth response.

Fig.1 Group delay difference of higher order modes (LP11,
LP21, LP31, LP12, LP02) and fundamental mode (LP01)

However it must be careful about the cutoff values of the
next higher modes in keeping group delay difference in
smooth response region. Another point of interest in Fig.1 is
the intersection point of two lines, e.g., LP01-11 and LP01-21. At
this point, group delay differences of LP01 LP11 and LP01

LP21 are the same, so V of a few-mode fiber can be figured
out, which can increase mode multiplexing by adding an-
other mode without significant change in mode dispersion.

Mode multiplexing density is a parameter which repre-
sents how many modes are used in MDM. Ultimately, this
parameter can lead to the increase in information transmis-
sion capacity of fiber per wavelength. As we know, increas-
ing the V value lets higher modes be guided through the fiber,
so we increase the V value to accommodate higher modes
and calculate the maximum delay difference between the fun-
damental mode and the highest allowed mode. The relation-
ship can be seen in Fig.2.

Fig.2 shows mode multiplexing of 2, 3, 8 and 12 modes.
All cases shown in Fig.2 are related to certain region of V for
their existence. Within the region, there are steeper responses
with small variations of V values. Mode multiplexing den-
sity can be increased by precisely controlling V parameter of
fiber at specific wavelength.

The impact of  on group delay difference is shown in
Fig.3. We can see that by decreasing the value of , the maxi-
mum value of group delay difference is decreased. It is be-
cause of more adherences to weakly guiding conditions of 
<<1. The modes tend to propagate nearly along the center
axis of core, so the relative difference between mode delays
is also observed on decline.

Fig.2 Group delay difference between the highest allowed
guided mode and fundamental mode with different V pa-
rameters

Fig.3 Group delay difference for various 

In this paper we exclusively cover the intermodal delay
for few-mode step index fibers with mode multiplexed
transmission. The impacts of fiber parameters on mode mul-
tiplexed transmission in terms of mode delays are studied. In
this analysis, the conditions are figured out, in which the mode
multiplexing density can be increased by controlling V pa-
rameter of fiber. We introduce a new observation parameter
of mode multiplexing density while looking at intermode
delay plots.
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